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A temporal linear stability analysis has been carried out to predict the instability
of a viscous liquid jet surrounded by a swirling air stream with three-dimensional
disturbances. The effects of flow conditions and fluid properties on the instability of
the liquid jet are investigated via a parametric study by varying axial Weber number
axial velocity ratio of the gas to liquid phase, swirl Weber numbers, density ratio
and the Ohnesorge number. It is observed that the relative axial velocity between the
liquid and gas phases promotes the interfacial instability. As the axial Weber number
increases, the growth rates of unstable waves, the most unstable wavenumber and
the unstable range of wavenumbers increase. Meanwhile, the increasing importance
of helical modes compared to the axisymmetric mode switches the breakup regime
from the Rayleigh regime to the first wind-induced regime and on to the second
wind-induced regime. The predicted range of wavenumbers in which the first helical
mode has higher growth rates than the axisymmetric mode agrees very well with
experimental data. Results show that the destabilizing effects of the density ratio
and the axial Weber number are nearly the same. Liquid viscosity inhibits the
disintegration process of the liquid jet by reducing the growth rate of disturbances
and by shifting the most unstable wavenumber to a lower value. Moreover, it damps
higher helical modes more significantly than the axisymmetric mode. Air swirl has
a stabilizing effect on the liquid jet. As air swirl strength increases, the growth rates
of helical modes are reduced more significantly than that of the axisymmetric mode.
The air swirl profile is found to have a significant effect on the instability of the liquid
jet. The global, as well as local, effects of the swirl profile are examined in detail.

1. Introduction
Atomization of liquid jets is fundamental to many industrial applications such as

fuel injectors in internal combustion engines, liquid fuel rocket engines, afterburners
of gas turbine engines, spray coating of surface materials, and agriculture sprays. The
breakup process of the liquid jet is affected by a large number of factors, including flow
conditions, fluid properties and nozzle geometry (Lin & Reitz 1998). The various forces
involved in the breakup process are inertial, surface tension, aerodynamic, centrifugal,
and viscous. Some of the forces resist the disintegration process while others promote
it. It is the competition among these forces that determines the instability of the liquid
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jet. Understanding the specific role of each force in the breakup process will benefit
not only fuel injector design but also the numerical simulation of spray combustion.

Following Rayleigh’s pioneering work (Rayleigh 1892), extensive studies have been
conducted on temporal as well as spatial instability from low to high jet velocity (Lin
& Reitz 1998). Four different breakup regimes have been identified that correspond
to different manifestations of the jet as the flow conditions are changed (Reitz &
Bracco 1982, 1986; Lefebvre 1989; Lin & Reitz 1998). These regimes are called the
Rayleigh regime, the first wind-induced regime, the second wind-induced regime, and
the atomization regime. In the Rayleigh regime, that is at very low jet velocity, surface
tension is the driving force for the growth of unstable waves formed at the interface
and the jet is broken up by the axisymmetric mode. The instability of a liquid jet in
the Rayleigh regime is summarized by Sterling & Sleicher (1975). In the first wind-
induced regime, the aerodynamic interaction between the liquid and the ambient
gas becomes important and the appearance of the jet becomes sinuous (asymmetric)
before breakup occurs. The size of drops formed in both the Rayleigh regime and
the first wind-induced regime is of the order of the jet diameter. In the second wind-
induced regime, drops are produced by shear waves on the jet surface and breakup
occurs several diameters downstream of the nozzle exit. In the atomization regime,
however, drops of sizes much smaller than the jet diameter are formed on the jet
surface and the jet breaks up immediately at the nozzle exit. Large discrepancies exist
between theoretical predictions of the intact length and spray angle, and measured
data. Various mechanisms have been proposed to explain the differences. These include
aerodynamic interaction theory, liquid turbulence, cavitation inside the nozzle, velocity
profile relaxation, and liquid supply pressure oscillation (Reitz & Bracco 1982). After
evaluation of these mechanisms based on their extensive experiments, Reitz & Bracco
(1982) found that no single mechanism could fully explain the jet atomization process.
However, they concluded that the combination of aerodynamic interaction theory and
nozzle geometry was effective in explaining their experimental results. Recent studies
(Mansour & Chigier 1994; Faeth, Hsiang & Wu 1995) have shown that turbulence
generated in the flow passage has a significant effect on jet breakup properties.
Also, papers by Lin & Ibrahim (1995) and Lin & Chen (1998) demonstrated that
interfacial shear and pressure fluctuation work together to cause the Taylor-mode
instability, which leads to droplets of diameter much smaller than the jet diameter. It
is now generally agreed that, among various mechanisms, the aerodynamic interaction
between the liquid and the ambient gas plays an important role in the breakup of
the liquid jet (Reitz & Bracco 1982; Lin & Reitz 1998). It is also well established
that the drop sizes are related to the most unstable wavelength and the intact length
depends on the maximum growth rate. Therefore, linear stability analysis based on
aerodynamic interaction theory can provide important guidance in determining the
breakup behaviour of the liquid jet.

In the existing aerodynamic interaction theory (Levich 1962; Sterling & Sleicher
1975; Reitz & Bracco 1982; Lin & Kang 1987), disturbances were assumed to be
axisymmetric. However, a number of experimental studies (Hoyt & Taylor 1977;
Chigier 1989; Krulle, Mayer & Schley 1990) have revealed the presence of three-
dimensional disturbances on the jet surface at high jet velocity. Yang (1992) was the
first to theoretically consider the asymmetric instability of an inviscid liquid jet and
found that sinuous modes become dominant in a certain wavelength range at high jet
velocity. Lin & Webb (1994) and Li (1995) extended Yang’s work by including liquid
viscosity. However, the question regarding which mode – the axisymmetric mode or
a helical mode – the liquid viscosity damps more significantly still remains unclear.
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Figure 1. A liquid jet surrounded by swirling air.

More importantly, the flow conditions considered in these studies are quite different
from those involved in practical fuel injection processes of combustion engines, and
air swirl and swirl profile effects have not be examined.

The objective of the present paper is to develop an advanced theoretical model to
predict the instability of a viscous liquid jet subjected to a swirling air stream and
three-dimensional disturbances. In the model, the ambient air is assumed to move
with axial as well as tangential velocity components. This flow condition is expected to
reveal essential physics underlying the practical fuel atomization process (Heywood
1988; Weaving 1990). Efforts have been made to understand how flow conditions
and fluid properties affect the growth rates of various helical modes in addition
to that of the axisymmetric mode under no-swirl and swirling flow conditions. To
investigate the effect of air swirl profile, the tangential velocity profile is chosen to be
a combination of free-vortex and solid-body-rotation types as a general swirl profile
can be constructed from them. The global and local effects of air swirl profile on the
instability of the liquid jet are formulated and examined in detail.

2. Mathematical formulation
The stability model considers a moving viscous liquid jet surrounded by a coaxial

swirling air stream as shown in figure 1. Both the liquid and the gas are assumed to be
incompressible and gravity force is neglected. The ambient air is considered inviscid
because inclusion of gas viscosity makes it extremely difficult to obtain the solution
for the swirling air stream which exactly satisfies the Navier–Stokes equations. As a
result, the mathematical formulation becomes impossible. The liquid jet is assumed
to move axially while the airflow has both axial and tangential velocity components.
The air swirl profiles considered in the study include the free vortex and the solid-
body rotation. To compare the effectiveness of the two swirl profiles in stabilizing or
destabilizing the liquid jet, effects of the swirl distribution (global effect) and the slope
of the swirl profile (local effect) are examined. Detailed mathematical formulations of
the global and local effects are given in § 2.6.

2.1. Linearized disturbance equations

The governing equations for incompressible viscous fluid flows are written in vector
form as

∇·V = 0, (1)
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ρ

(
∂V

∂t
+ V ·∇V

)
= −∇p+ µ∇2V , (2)

where V = (U,V ,W ) is the velocity vector, ρ is fluid density, t is time, p is the
static pressure, and µ is the fluid dynamic viscosity. To derive the linearized distur-
bance equations, velocity and pressure disturbances are superposed on their mean
counterparts:

V = V̄ + v, p = P̄ + p′, (3)

where v = (u, v, w); the overbar represents the assumed mean flow quantities and the
prime indicates the disturbance. The disturbances are assumed to have the forms

(u, v, w, p′) = (û(r), v̂(r), ŵ(r), p̂(r))ei(kx+nθ−ωt), (4)

where the caret indicates disturbance amplitude which is a function of r only, k is
the axial wavenumber, n is the azimuthal wavenumber, and ω is the frequency. For
temporal instability analysis, the wavenumbers k and n are real while frequency ω
is complex. The imaginary part of ω reflects the growth rate of a disturbance. The
displacement disturbance at the liquid/gas interface is assumed to be

η(x, θ, t) = η̂ei(kx+nθ−ωt). (5)

Substituting (3) into (1) and (2) and neglecting second-order terms, we obtain the
linearized disturbance equations for the liquid phase in vector form:

∇·v = 0, (6)

ρl

(
∂v

∂t
+Ul

∂v

∂x

)
= −∇p′l + µ∇2v, (7)

In the case of the free-vortex swirl profile, the linearized disturbance equations for
the gas phase can be written in component form as

∂u

∂t
+
A

r2

∂u

∂θ
+Ug

∂u

∂x
= − 1

ρg

∂p′g
∂x

, (8)

∂v

∂t
+Ug

∂v

∂x
+
A

r2

∂v

∂θ
− 2Aw

r2
= − 1

ρg

∂p′g
∂r
, (9)

∂w

∂t
+Ug

∂w

∂x
+
A

r2

∂w

∂θ
= − 1

ρg

∂p′g
r∂θ

, (10)

where A is the vortex strength and subscript g represents the gas phase. Similarly, for
the case of the solid-body-rotation profile, the linearized disturbance equations are
governed by

∂u

∂t
+ Ω

∂u

∂θ
+Ug

∂u

∂x
= − 1

ρg

∂p′g
∂x

, (11)

∂v

∂t
+ Ω

∂v

∂θ
+Ug

∂v

∂x
− 2Ωw = − 1

ρg

∂p′g
∂r
, (12)

∂w

∂t
+ Ω

∂w

∂θ
+Ug

∂w

∂x
+ 2Ωv = − 1

ρg

∂p′g
r∂θ

, (13)

where Ω is the angular velocity.
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2.2. Boundary conditions

Boundary conditions must be prescribed at the jet surface to derive the dispersion
equation. The kinematic boundary condition requires that the radial velocity compo-
nent be continuous across the interface. The kinematic boundary condition for the
liquid phase is given by

v =
Dη

Dt
=
∂η

∂t
+Ul

∂η

∂x
at r = a, (14)

where a is the jet radius. For the ambient air, the kinematic boundary conditions
corresponding to the free-vortex and solid-body rotation profiles are, respectively,

v =
Dη

Dt
=
∂η

∂t
+
A

r2

∂η

∂θ
+Ug

∂η

∂x
at r = a, (15)

v =
Dη

Dt
=
∂η

∂t
+ Ω

∂η

∂θ
+Ug

∂η

∂x
at r = a. (16)

The dynamic boundary conditions in the axial, azimuthal, and radial directions are

τrx = µ

(
∂u

∂r
+
∂v

∂x

)
= 0, (17)

τrθ = µ

(
∂w

∂r
+

1

r

∂v

∂θ
− w

r

)
= 0, (18)

p′l − p′g = −σ
(
η

a2
+

1

a2

∂2η

∂θ2
+
∂2η

∂x2

)
+
ρgA

2η

a3
+ 2µ

∂v

∂r
, (19)

p′l − p′g = −σ
(
η

a2
+

1

a2

∂2η

∂θ2
+
∂2η

∂x2

)
+ ρgΩ

2aη + 2µ
∂v

∂r
, (20)

where σ is the surface tension. Note that (19) and (20) correspond to the free-vortex
and solid-body rotation profiles, respectively.

2.3. Pressure disturbance in the liquid jet

Taking the divergence of (7) and making use of (6) leads to

∇2p′l = 0. (21)

Substituting (4) into (21), we obtain the bounded solution for the amplitude of the
pressure disturbance in the liquid as

p̂l(r) = −ρl(−iω + ikUl)C1In(k r), (22)

where In is the nth-order modified Bessel function of the first kind. Upon substitution
of (4) into (7) and transforming variables (û, v̂, ŵ) into (û1, v̂1, ŵ1) through the following
relationships:

û1 = û+
1

ρl(−iω + ikUl)
ikp̂, (23)

v̂1 = v̂ +
1

ρl(−iω + ikUl)

dp̂

dr
, (24)

ŵ1 = ŵ +
1

ρl(−iω + ikUl)

in

r
p̂, (25)
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we arrive at the following equations which govern the amplitudes of velocity distur-
bances:

d2û1

dr2
+

1

r

dû1

dr
− 1

r2
(n2 + s2r2)û1 = 0, (26)

(Bn − 1)v̂1 = 2niŵ1, (27)

(Bn − 1)ŵ1 = −2niv̂1, (28)

where

s2 = k2 +
(−iω + ikUl)

v
and the Bessel operator Bn is given by

Bn = r2 d2

dr2
+ r

d

dr
− (n2 + s2r2).

Solutions to (26), (27) and (28) are, respectively,

û1 = C2In(sr), (29)

v̂1 = C3In−1(s r) + C4In+1(s r), (30)

ŵ1 = i(C3In−1(s r)− C4In+1(s r)). (31)

Substituting (23), (24), (25), (29), (30) and (31) into (6) leads to the relationship among
C2, C3 and C4 as follows:

C3 = − ikC2

s
− C4. (32)

Hence, the amplitudes of velocity disturbances in the liquid phase can be expressed
by

û = ikC1In(k r) + C2In(s r), (33)

v̂ = kC1I
′
n(k r)− ik

s
C2In−1(s r) +

n

s r
C5In(s r), (34)

ŵ = i

[
nC1

r
In(k r)− ik

s
C2In−1(s r) + C5I

′
n(s r)

]
, (35)

where C5 = −2C4. Constants C1, C2 and C5 are determined by utilizing boundary
conditions, i.e. (14), (17) and (18). Their expressions are given in Liao (1999) and are
not repeated here for brevity. The final form of the pressure disturbance inside the
liquid jet can be expressed as

p′l = −ρl(−iω + ikUl)
2η̂
J1

J2

aIn(k r)

In(ka)
ei(kx+nθ−ωt), (36)

where

J1 =
(ka)2

(sa)2
n
[
saI ′n−1(sa)− In−1(sa)

]
+
n2(ka)2

(sa)2

In−1(sa)

I ′n(sa)

− 1

In(sa)

[
(sa)2I ′′n (sa)− saI ′n(sa) + n2In(sa)

](k2

s2
In−1(sa)

I ′n(sa)
+ 1

)
, (37)
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J2 = 2n2

[
kaI ′n(ka)
In(ka)

− 1

]
− n2(ka)2

(sa)2

ka I ′n(ka)
In(ka)

In−1(sa)

I ′n(sa)

− (ka)3

(sa)2

I ′n(ka)
I ′n(sa)

n

In(ka)

[
saI ′n−1(sa)− In−1(sa)

]− ka I ′n(ka)
In(ka)

×
[
(sa)2 I

′′
n (sa)

In(sa)
− saI

′
n(sa)

In(sa)
+ n2

](
k2

s2
In−1(sa)

I ′n(sa)
− 1

)
.

(38)

2.4. Pressure disturbance in the swirling air

In the case of the free-vortex swirl profile, substitution of (4) into (6), (8), (9) and (10)
leads to

ŵ =
n

kr
û, (39)

v̂ = − i

k

dû

dr
. (40)

Therefore, the continuity equation can be rewritten as

d2û

dr2
+

1

r

dû

dr
−
(
n2

r2
+ k2

)
û = 0. (41)

The above equation is a modified Bessel equation with a bounded solution in the
form of

û(r) = C6Kn(kr), (42)

where Kn is the nth-order Bessel function of the second kind. The pressure disturbance
inside the gas phase is given by, after constant C6 is determined from (15),

p′g =
ρg

k

(
−ω +

An

a2
+ kUg

)(
−ω +

An

r2
+ kUg

)
η̂
Kn(kr)

K ′n(ka)
ei(kx+nθ−ωt). (43)

In a similar fashion, for the case of the solid-body-rotation profile, v̂ and ŵ are
expressed as

v̂ =

−i

[
(−ω + nΩ + kUi)

2 dû

dr
+

2nΩ

r
(−ω + nΩ + kUi)û

]
k[(−ω + nΩ + kUi)2 − 4Ω2]

, (44)

ŵ =

[
(−ω + nΩ + kUi)

2û+ 2Ω(−ω + nΩ + kUi)
dû

dr

]
k[(−ω + nΩ + kUi)2 − 4Ω2]

. (45)

And the continuity equation can be rewritten in the form

d2û

dr2
+

1

r

dû

dr
− 1

r2

[
n2 + k2r2

(
1− 4Ω2

(−ω + nΩ + kUg)2

)]
û = 0. (46)

The bounded solution to the above equation is

û(r) = C7Kn

(
kr

√
1− 4Ω2

(−ω + nΩ + kUg)2

)
. (47)

Therefore, in the case of the solid-body-rotation profile, after constant C7 is determined
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from (16), the pressure disturbance in the gas phase can be expressed as

p′g =
ρg[(−ω + nΩ + kUg)

2 − 4Ω2](−ω + nΩ + kUg)η̂Kn(k1r)

(2nΩ/a)Kn(k1a) + (−ω + nΩ + kUg)k1K ′n(k1a)
ei(kx+nθ−ωt), (48)

where k1 = k

√
1− 4Ω2

(−ω + nΩ + kUg)2
.

2.5. Dispersion equations

The dispersion equation is obtained by means of substitution of the pressure distur-
bances ((36), (43) or (48)) inside the liquid and gas phases into the dynamic boundary
condition ((19) or (20)). To isolate the effects of flow conditions as well as fluid proper-
ties on the instability of the liquid jet, the dispersion equation is non-dimensionalized
by introducing the following dimensionless parameters:

Wel =
ρlU

2
l a

σ
, Wes =

ρlW
2a

σ
, Wesf =

ρlA
2

σa
, Wess =

ρlΩ
2a3

σ
, Ur =

Ug

Ul

,

ρ̄ =
ρg

ρl
, Z =

µ

(ρlσa)1/2
, k̄ = ka, s̄ = sa, ω̄ =

ω

(σ/ρla3)1/2
.

 (49)

The non-dimensional dispersion equations corresponding to the free-vortex and solid-
body rotation profiles are, respectively,

(−ω̄+k̄We
1/2
l )2 J1

J2

− ρ̄Kn(k̄)

k̄K ′n(k̄)
(−ω̄ + nWe

1/2
sf + k̄UrWe

1/2
l )2

−2Z(−ω̄ + k̄We
1/2
l )

{
k̄2I ′′n (k̄)

In(k̄)

J1

J2

− k̄2

s̄

I ′n−1(̄s)

I ′n(̄s)

(
k̄I ′n(k̄)
In(k̄)

J1

J2

)
+
s̄I ′n(̄s)− In(̄s)

In(̄s)

[
− k̄I

′
n(k̄)

In(k̄)

J1

J2

+
k̄2In−1(̄s)

s̄2I ′n(̄s)

(
1 +

k̄I ′n(k̄)
In(k̄)

J1

J2

)
+ 1

]}
= −(1− k̄2 + n2) + ρ̄Wesf, (50)

(−ω̄+k̄We
1/2
l )2 J1

J2

− ρ̄[ω̄2
1 − 4Wess]ω̄1Kn(k̄1)

2nWe
1/2
ss Kn(k̄1) + k̄1ω̄1K ′n(k̄1)

−2Z(−ω̄ + k̄We
1/2
l )

{
k̄2I ′′n (k̄)

In(k̄)

J1

J2

− k̄2

s̄

I ′n−1(̄s)

I ′n(̄s)

(
k̄I ′n(k̄)
In(k̄)

J1

J2

+ 1

)
+
s̄I ′n(̄s)− In(̄s)

In(̄s)

[
− k̄I

′
n(k̄)

In(k̄)

J1

J2

+
k̄2In−1(̄s)

s̄2I ′n(̄s)

(
1 +

k̄I ′n(k̄)
In(k̄)

J1

J2

)
+ 1

]}
= −(1− k̄2 + n2) + ρ̄Wess, (51)

where k̄1 = k̄

√
1− 4Wess

(−ω̄ + nWe
1/2
ss + k̄UrWe

1/2
l )2

, ω̄1 = (−ω̄ + nWe
1/2
ss + k̄UrWe

1/2
l ).

Equations (50) and (51) do not have closed-form solutions. They were numerically
solved using the secant method, which requires two guessed complex values. For a
swirling case, solutions of its non-swirling counterpart were taken as the guessed
values. The solution was considered converged when the value of left-hand side of
the dispersion equation was smaller than 10−8. For each pair of (k̄, n) and given
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dimensionless parameters, we solved for the root with the maximum imaginary part,
which represents the growth rate of a disturbance.

2.6. Global and local effect

It is well known that the hydrodynamic stability of a fluid flow depends upon its
velocity profile, and the instability of a liquid jet is controlled by the fluctuating
pressure difference between the liquid and gas phases. For a given airflow moving
with a uniform axial velocity component, the radial pressure gradient is determined by
its swirling component. Therefore, the air swirl profile is expected to have a significant
effect on the instability of the liquid jet. For the two profiles chosen, a fundamental
question arises as to which profile – the free vortex or solid-body rotation – has a
more significant effect on the instability of the liquid jet? To answer this question, the
concepts of global and local effects are defined and formulated below.

The global effect refers to the effect of air swirl distribution on the instability of
the liquid jet. That is, for an equal amount of angular momentum distributed within
a thin layer near the interface (r = a), which profile, the free vortex or solid-body
rotation, affects the flow more significantly? The angular momentum Gθ in a thin
layer of a thickness of (b-a) can be expressed as

Gθ =

∫ b

a

(Wr)ρU2πrdr. (52)

For the two swirl profiles, as shown in figure 2(a), an equal amount of angular
momentum within a layer of thickness a(b = 2a) leads to

Ω =
2A

5a2
. (53)

The local effect refers to the effect of the slope of a swirl profile at the jet surface
on the instability of the liquid jet. It can be shown that for equal tangential velocity
at the jet surface, the free-vortex and solid-body-rotation profiles have equal slopes
but with opposite sign as shown in figure 2(b). As the swirl Weber number for the
free-vortex and the solid-body-rotation profiles have been defined as Wesf = ρlA

2/σa
and Wess = ρlΩ

2a3/σ, for a given nozzle geometry and fluid properties, the swirl
Weber number thus reflects the local effect. Given a swirl Weber number, the local
effect can be clearly understood by comparing the growth rates of various modes
corresponding to the free-vortex and solid-body-rotation profiles.

3. Results and discussion
A comprehensive parametric study has been conducted to investigate the effects of

flow parameters and fluid properties on the instability of a liquid jet. The parameter
space consists of the axial Weber number, Wel , the velocity ratio of gas to liquid,
Ur , the swirl Weber numbers, Wes, Wesf and Wess, gas-to-liquid density ratio, ρ̄, and
Ohnesorge number, Z . An extensive effort has been made towards the understanding
of the effects of air swirl and swirl profile on the instability of the liquid jet. Both
qualitative and quantitative comparisons have been made between the theoretical
predictions and available experimental data, and agreement is very good.

3.1. Model validation

To validate our theoretical model, we first consider the limiting case of a jet discharging
in stagnant air. Figures 3(a), 3(b) and 3(c) show the growth rates of unstable waves
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Free vortex

Solid-body rotation

Free vortex
W = A/r
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(a)

Figure 2. (a) Swirl distribution within a layer of thickness of a, and
(b) equal tangential velocity leads to equal slope of swirl profile at the jet surface.

versus axial Weber number in the Rayleigh, the first wind-induced and the second
wind-induced regimes, respectively. It should be noted that the current stability model
could not distinguish the second wind-induced regime from the atomization regime.
As can be clearly seen from the figures, at each axial Weber number, there exists a
finite range of wavenumbers, k̄, where the growth rates are positive. Also, there is a
wavenumber that corresponds to the maximum growth rate ω̄imax. This wavenumber
is called the most unstable wavenumber k̄∗. It is also seen from figure 3(a), that at very
low jet velocity the axisymmetric mode (n = 0) has the highest growth rate within
the entire unstable range and thus dominates the growth competition of unstable
waves. This conclusion was proposed by Rayleigh and later validated by experiments
(Lefebvre 1989). As jet velocity increases as shown in figure 3(b), the maximum growth
rate and the most unstable wavenumber shift to higher values. More importantly,
the growth rate of helical modes becomes comparable with that of the axisymmetric
mode. In certain ranges of wavenumbers, their growth rates are higher than that of the
axisymmetric mode. This behaviour has also been observed in several experimental
studies (Hoyt & Taylor 1977; Chigier 1989; Krulle et al. 1990). To further compare
the predicted trend of breakup length with observed behaviour, variations of the
maximum growth rate and the most unstable wavenumber with axial Weber number
have been correlated for the first and second wind-induced regimes (Liao et al. 1998).
It was shown that the stability model correctly predicts the trend of the variation of
intact length with jet velocity in all three regimes.
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Figure 3. Non-dimensional growth rates versus wavenumber in three regimes: (a) Rayleigh regime,
(b) first wind-induced regime, and (c) second wind-induced regime. Wes = 0, Ur = 0, ρ̄ = 0.001,
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Figure 5. Effect of relative axial velocity between the liquid and gas phases on the
instability of the liquid jet.

To quantitatively validate the stability model with experimental data, values of flow
parameters and fluid properties are chosen to be the same as those of Case 2 listed
in Table I of Yang (1992). Figure 4 shows that the first helical mode (n = 1) indeed
has the highest growth rate among all modes in the range 0 < k̄ < 3.2, which is close
to the experimental result of 0 < k̄ < 1.75. Improvement is evident when compared
with Yang’s inviscid prediction of 0 < k̄ < 3.5.

In summary, our results in the limit of zero air velocity have been extensively
validated and agree well with earlier theoretical and experimental studies. Results of
a liquid jet subjected to air moving with both axial and swirling velocity components
are discussed below.

3.2. Effect of relative axial velocity

The effect of the relative axial velocity between the liquid jet and the ambient air
is investigated by considering the axial velocity ratio of gas to liquid, Ur . Figure 5
illustrates this effect on the growth rates of various unstable modes when the ambient
air is swirling with a solid-body-rotation profile. For a given jet velocity, as the axial
component of air velocity is increased, i.e. as the relative axial velocity is decreased,
the growth rate and the most unstable wavenumber shift to lower values thus making
the jet more stable. This confirms that it is the relative axial velocity between the
liquid jet and the gas that determines the instability of the liquid jet. The above
statement can be explained in terms of aerodynamic interaction between the liquid
and gas phases. The difference between the fluctuating pressures in the liquid and
gas phases reflects the strength of aerodynamic interaction and causes the breakup of
the liquid jet. The smaller the relative velocity is, the smaller the fluctuating pressure
difference, and hence the weaker the aerodynamic interaction. Thus, the jet becomes
more stable.

3.3. Effect of fluid properties

The influence of gas-to-liquid density ratio on the instability of the liquid jet is shown
in figure 6, where the solid line represents the non-swirling flow condition and the
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Figure 6. Effect of density ratio on growth rates of unstable waves.

dotted line corresponds to the swirling case. For both flow conditions, it is evident
that the most unstable wavenumber, the unstable range, and the maximum growth
rate increase with increasing gas density. Since an increase in gas density increases
the aerodynamic force, it enhances the aerodynamic interaction between the liquid
and gas phase as expected. As droplet sizes and breakup length are related to the
wavelength of the most unstable waves and the maximum growth rate, respectively,
a high gas/liquid density ratio thus leads to smaller droplets and a shorter breakup
length. This conclusion is in agreement with results reported in the literature (Lefebvre
1989). Ranze (1958) further argued that jet spray angle can be estimated from the
ratio of the disturbance amplitude increase to the distance travelled by the fluid
particle in the same time period. According to this argument, for a given jet velocity,
a higher growth rate implies a larger spray angle. Hence, the results of the linear
stability analysis indicate that spray angle increases with density ratio. This trend
is consistent with extensive experimental data reported by Reitz & Bracco (1982).
Furthermore, it is interesting to note that the effect of the density ratio on the growth
rate is almost comparable to that of the axial Weber number. For example, a ten-fold
increase in density ratio increases the maximum growth rate by 33 times, while a
ten-fold increase in axial Weber number increases the maximum growth rate by 34
times. This observation is consistent with available empirical correlations for the
intact length and mean droplet size, in which the axial Weber number and density
ratio are raised to the same power (Bayvel & Orzechowski 1993). It may be noted
that the effect of density ratio on jet instability may not be the same in all regimes. In
the Rayleigh regime, the density ratio has been shown to exhibit a stabilizing effect
on the liquid jet (Li & Shen 1998). In this regime, the liquid Weber number is smaller
than the critical Weber number and the liquid jet is absolutely unstable, which is
caused by surface tension.

Figure 7 illustrates the effect of viscosity on the growth rates of both the axisym-
metric and helical modes. It is clearly seen that liquid viscosity inhibits the growth of
unstable waves and shifts the most unstable wavenumber to a lower value for both
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Figure 7. Effect of viscosity on the growth rates of axisymmetric and helical modes:
(a) Z = 0.0018; (b) Z = 0.018; (c) Z = 0.18. Wel = 10 000, Ur = 0, Wes = 0, ρ̄ = 0.0013.

the axisymmetric and helical modes. This implies that a high value of liquid viscosity
delays the breakup of the liquid jet and results in a longer intact length, smaller
spray angle and larger drop sizes. These results are also consistent with experimental
observations (Reitz & Bracco 1982; Lefebvre 1989). However, the liquid viscosity does
not change the unstable range of wavenumbers, as demonstrated by Chandrasekhar
(1961).

An important question remains to be answered: which mode, the axisymmetric
mode or helical mode, does liquid viscosity damp more significantly? To answer
this question, a concept called ‘relative importance’ of a helical mode compared
with the axisymmetric mode is defined as the ratio of the maximum growth rate
of a helical mode to that of the axisymmetric mode, i.e. (ω̄imax)n/(ω̄imax)0. Table
1 lists the values of ‘relative importance’ for the first three helical modes at three
different Ohnesorge numbers. Table 1 indicates that as the Ohnesorge number (liquid
viscosity) increases, the relative importance of helical modes decreases. The highest
helical mode has the most significant decrease. Therefore, viscosity damps the higher
helical modes most. This theory helps to explain why only the axisymmetric mode
and lower helical modes, instead of higher helical modes, are typically observed in
experiments. It also demonstrates why the effect of liquid viscosity must be considered
in the establishment of accurate correlations for the maximum growth rate and the
corresponding wavelength, as was done by Reitz (1987).
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Figure 8. Effect of air swirl on the growth rates of the axisymmetric and helical modes:
(a) Wes = 0; (b) Wes = 1000; (c) Wes = 5000. Wel = 5000, Ur = 0, Z = 0.0018, ρ̄ = 0.0013.

Z = 0.0018 Z = 0.018 Z = 0.18

(ω̄imax)n
(ω̄imax)0

(ω̄imax)n
(ω̄imax)0

(ω̄imax)n
(ω̄imax)0mode ω̄imax ω̄imax ω̄imax

n = 0 1.0000 16.127 1.0000 14.539 1.0000 8.702
n = 1 0.9785 15.780 0.9778 14.216 0.9688 8.431
n = 2 0.9087 14.654 0.9075 13.194 0.8690 7.562
n = 3 0.7878 12.692 0.7757 11.279 0.6845 5.957

Table 1. Effect of Ohnesorge number on (ω̄imax)n/(ω̄imax)0.

3.4. Effect of air swirl

The effects of air swirl on the growth rates of the axisymmetric and helical modes
are illustrated in figure 8. It is clearly seen that, with a free-vortex swirl profile, as the
swirl strength increases, the growth rate and the most unstable wavenumber of the
axisymmetric mode decrease. Moreover, the growth rates of helical modes are reduced
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more significantly than that of the axisymmetric mode. Therefore, the axisymmetric
mode becomes the dominant mode in the breakup of the liquid jet as swirl is added
to the ambient air. In contrast, for an annular liquid sheet, liquid as well as air
swirl enhance the helical modes more significantly than the axisymmetric mode, thus
making higher helical modes dominant (Liao et al. 1999a, b). The fact that air swirl
inhibits the atomization process of the liquid jet has also been observed in previous
studies (Lian & Lin 1990; Ramamurthi & Madhavan 1998). This behaviour can be
explained as follows. Inside the swirling air, there exists a pressure gradient, leading
to increasing air static pressure in the positive radial direction. As the liquid surface
is disturbed outward into the swirling air stream, the increasing static pressure of the
ambient air pushes the surface back towards the undisturbed position, thus making
the liquid jet stable. This illustrates that the effect of swirling air is identical to that of
surface tension beyond the Rayleigh regime: both damp out the small disturbances
at the liquid/air interface.

Although it is evident from the above discussion that air swirl has a stabilizing effect
on the instability of the liquid jet, the effect of air swirl profile still remains unclear.
To study this effect, free-vortex and solid-body-rotation swirl profiles are considered.
Growth rates corresponding to these two profiles are calculated and compared with
their non-swirling counterparts. Local as well as global effects of the swirl profiles are
quantitatively investigated.

As was discussed in § 2.6, the local effect is reflected by the slope of swirl profile
at the jet surface or by the swirl Weber number. Figure 9 illustrates the local effect
of swirl profile on the instability of the liquid jet. Growth rates of the axisymmetric
mode corresponding to the free-vortex and solid-body-rotation profiles are compared
with their non-swirling counterpart in figure 9(a). It is clearly seen that their growth
rates are lower than their non-swirling counterpart. This demonstrates that air swirl
indeed has a stabilizing effect on the liquid jet with both swirl profiles. However, with
the same slope at the jet surface, the free-vortex swirl profile leads to higher growth
rates than the solid-body-rotation profile. The stronger the air swirl, the larger the
difference of growth rate between these two swirl profiles. Therefore, with regard to
the local effect, the solid-body-rotation profile is more effective in stabilizing the liquid
jet. This can be explained as follows. Equal slope of swirl profile leads to the same
swirling velocity component at the jet surface. However, for a solid-body-rotation
profile, the tangential velocity increases while that of the free-vortex profile decreases.
Therefore, the pressure gradient associated with the solid-body-rotation profile is
larger than that with free-vortex profile. This larger pressure gradient leads to a
greater stabilizing effect on the liquid jet as discussed before. Comparing figures 9(a)
and 9(b), we also note that the effect of air swirl on the growth rates of helical modes
is more significant than on that of the axisymmetric mode.

The global effect of the swirl profile is examined by distributing an equal amount
of angular momentum within a thin layer near the jet surface. Figures 10(a) and 10(b)
are comparisons of growth rates of the axisymmetric (n = 0) and the first helical
mode (n = 1) between the free-vortex and solid-body-rotation swirl profiles when
an equal amount of angular momentum is distributed within a layer of thickness
a. Again, we find that air swirl leads to lower growth rates than the non-swirling
case and stabilizes the liquid jet. More importantly, with equal amounts of angular
momentum, the solid-body-rotation profile has higher growth rates and larger values
of the most unstable wavenumbers than the free-vortex swirl profile. Therefore, as
far as the global effect is concerned, the free-vortex swirl profile is more effective in
stabilizing the liquid jet, which is opposite to that associated with the local effect. This



Effect of air swirl profile on viscous jet instability 17

5

4

3

0

1 6

(a)

G
ro

w
th

 r
at

e,
 ω

i

Wes = 0

2

1

2 3 54

Wess =1000
solid-body rotation

Wesf = 5000
free vortex

Wess = 5000
solid-body rotation

Wesf =1000
free vortex

5

4

3

0

1 6

(b)

Wavenumber, k

G
ro

w
th

 r
at

e,
 ω

i

Wes = 0

2

1

2 3 54

Wess = 1000
solid-body rotation

Wesf =1000
free vortex

0

Figure 9. Local effect – comparison of growth rates of the axisymmetric and the first helical
mode between free-vortex and solid-body-rotation swirl profile with equal slope at the jet surface:
(a) n = 0 mode and (b) n = 1 mode. Wel = 5000, Ur = 0, Z = 0.0018, ρ̄ = 0.0013.

behaviour can be explained by considering figure 2(a), which shows that the tangential
velocity with the free-vortex profile is larger than that with solid-body-rotation profile
near the jet surface. This leads to a larger static air pressure in the vicinity of jet
surface. Therefore, the free-vortex swirl profile becomes more effective in stabilizing
the liquid jet.

In summary, the air swirl profile has a significant effect on the instability of the
liquid jet. With equal slope of swirl profile, the solid-body-rotation profile is more
effective in stabilizing the liquid jet than the free-vortex profile. However, when equal
amounts of angular momentum are distributed within a thin layer, the free-vortex
profile becomes more effective than solid-body rotation in stabilizing the liquid jet.
It is the tangential velocity in the vicinity of the jet surface that determines the
effectiveness of the swirl profile in stabilizing the liquid jet.
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Figure 10. Global effect – comparison of growth rates between the free-vortex and solid-body-
rotation profiles when layer thickness equals a: (a) n = 0 mode and (b) n = 1 mode. Same flow
conditions as figure 9.

4. Conclusions
A theoretical model has been developed to predict the instability of a viscous

liquid jet subjected to an air stream moving with both swirling and axial velocity
components. It has been shown that results from earlier studies can be recovered by
considering limiting cases of the present model. Effects of flow conditions (in terms
of axial Weber number, velocity ratio, and swirl Weber number) and fluid properties
(in terms of density ratio and Ohnesorge number) are investigated. From the study,
we can draw the following conclusions:

(i) The relative axial velocity between the liquid and gas phases promotes jet
instability whereas the liquid viscosity tends to stabilize the liquid jet. For the range
of Weber numbers considered in this study, an increase in the gas-to-liquid density
ratio increases the maximum growth rate and the most unstable wavenumber.

(ii) As the liquid axial Weber number increases, the importance of helical modes
compared to that of the axisymmetric mode increases, resulting in a transition from
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the Rayleigh regime to the first wind-induced regime and subsequently to the second
wind-induced regime.

(iii) Liquid viscosity reduces the growth rates of unstable waves and damps the
higher helical modes more significantly than the axisymmetric mode.

(iv) Both the free-vortex and the solid-body-rotation swirl profiles were found
to exhibit a stabilizing effect on the liquid jet. With increasing air swirl strength,
the growth rates for higher helical modes are reduced more significantly than the
axisymmetric mode.

(v) With an equal slope of swirl profile (local effect) at the jet surface, the solid-
body-rotation profile in more effective in stabilizing the liquid jet than a free-vortex
profile. However, when equal amounts of angular momentum are distributed within
a layer (global effect) in the vicinity of the interface, the free-vortex profile becomes
more effective in stabilizing the jet than the solid-body-rotation profile.

(vi) It is the magnitude of the tangential velocity component in the vicinity of the
jet surface that determines the effectiveness of air swirl profile in stabilizing the liquid
jet.

Support for this work was provided by Parker Hannifin Corporation, National
Science Foundation and NASA Glenn Research Center under grant NAG3-1987.
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